

ELIZADE UNIVERSITY ILARA MOKIN, ONDO STATE

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

SECOND SEMESTER EXAMINATION, 2019/2020 ACADEMIC SESSION

COURSE TITLE: ELECTRONIC CIRCUIT I

COURSE CODE: EEE 321

EXAMINATION DATE:

COURSE LECTURER: DR K. O. TEMIKOTAN

HOD's Signature

TIME ALLOWED: 3 HOURS

INSTRUCTION

- 1. ANSWER ANY **FIVE** QUESTIONS
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE NOT ALLOWED TO BORROW ANY WRITING MATERIALS OR CALCULATORS DURING THE EXAMINATION.
- 4. SMART WATCHES OR SIMILAR DEVICES ARE NOT ALLOWED IN THE EXAMINATION VENUE.

QUESTION ONE [12 marks]

a. In an amplifier, the maximum voltage gain is 2000 and occurs at 2 kHz. It falls to 1414 at 10 kHz and 50 Hz. Find:

- (i) Bandwidth (1 mark)
- (ii) Lower cut-off frequency (1 mark)
- (iii) Upper cut-off frequency (1 mark)
- b. For the circuit shown in the Figure Q 1, draw
 - i. the DC equivalent circuit (2 marks)
 - ii. the AC equivalent circuit. (2 marks)
 - iii. What is the purpose of the capacitor C₂ in the amplifier circuit? (1 mark)
 - iv. If a 50 mV r.m.s. input signal is applied to the amplifier, what is the peak-to-peak output voltage? Given that $g_m = 5000 \mu S$ (4 marks)

Figure Q 1

QUESTION TWO [12 marks]

Design a single stage common emitter amplifier given the following parameters;

 V_{CC} = 12 V, I_C = 5 mA, and β (h_{fe}) = 50. Transistor (Q) = 2N3904 (silicon). State clearly the assumptions made in your design (12 marks)

QUESTION THREE

a. The Table Q 3a shows the data of an experiment on a MOSFET. If $I_{D \text{ (on)}} = 3 \text{ mA}$ at $V_{GS} = 10 \text{V}$ and $V_{GS \text{ (th)}} = 3 \text{V}$, find the constant K for the MOSFET. (2 marks)

[12 marks]

Table Q 3a MOSFET Data

$V_{GS}(V)$	$I_{D}(mA)$
5	
8	
10	
12	

- b. Complete the Table Q 3a and plot the transconductance curve for the MOSFET (7 marks)
- c. The following readings were obtained experimentally from a JFET:

V_{GS}	0 V	0 V	-2 V
V_{DS}	7 V	15 V	15 V
I_D	10 mA	10.25 mA	9.65 mA

Determine (i) a. c. drain resistance (ii) transconductance and (iii) amplification factor. (3 marks)

QUESTION FOUR

[12 marks]

- a. What is the main drawback of a standard common emitter (CE) amplifier circuit? (2 marks)
- b. Using a neat diagram, show how a swamped CE amplifier is connected. (2 marks)
- c. What is the purpose of using a swamped connection? (1 mark)
- d. For the amplifier circuit shown in Figure Q 4, find the voltage gain of the amplifier with (i) C_E connected in the circuit (ii) C_E removed from the circuit. Comment on the results, (7 marks)

QUESTION FIVE [12 marks]

a. In the circuit shown in Figure Q5a, $R_1 = R_2 = R_3 = R_f = 1 k\Omega$. If $V_1 = 2V$, $V_2 = 1 V$, and $V_3 = 4V$. Find V_{out} . Show all workings. (5 marks)

Figure Q 5a

b. A three-stage OP-AMP circuit is required to provide voltage gains of +10, - 18 and -27. Design the OP-AMP circuit. Use a 270 k Ω feedback resistor for all three circuits. What output voltage will result for an input of 150 μ V? (7 marks)

QUESTION SIX [12 marks]

- a. List four methods of biasing BJTs (2 marks)
 - b. Given $V_{CC} = 20 \text{ V}$, $R_B = 200 \text{ k}\Omega$, $R_C = 800 \Omega$ of a fixed bias CE circuit. Take $\beta = 100$
 - i. Draw the circuit, show the currents, and label all the components. (4 marks)
 - ii. Determine the value of the base current (2 marks)
 - iii. Determine the value of the collector current (1 mark)
 - iv. Determine the value of the collector-to-emitter voltage (2 marks)
 - v. Determine the stability factor (neglect V_{BE}) (1 mark)

QUESTION SEVEN [12 marks]

In a transistor amplifier, when the signal changes by 0.02V, the base current changes by 10 μ A and collector current by 1mA. If collector load $R_C = 5$ k Ω and $R_L = 10$ k Ω , find: (i) current gain (ii) input impedance (iii) a.c. load (iv) voltage gain (v) power gain (vi) Power gain in decibel. (12 marks)